

scikit-surgeryspeech documentation

Source code [https://github.com/SciKit-Surgery/scikit-surgeryspeech/] is avaialble on GitHub.

	scikit-surgeryspeech
	Example usage

	Developing

	Installing

	Licensing and copyright

	Acknowledgements

Module Reference

	Voice Recognition Service

scikit-surgeryspeech

[image: Logo]
 [https://github.com/SciKit-Surgery/scikit-surgeryspeech]

[image: GitHub Actions CI status]
 [https://github.com/SciKit-Surgery/scikit-surgeryspeech/actions][image: Test coverage]
 [https://coveralls.io/github/SciKit-Surgery/scikit-surgeryspeech?branch=master][image: Documentation Status]
 [http://scikit-surgeryspeech.readthedocs.io/en/latest/?badge=latest][image: _images/205463f67ef3b5c8330283991bb4934f989722e5.svg]
[image: Follow scikit_surgery on twitter]
 [https://twitter.com/scikit_surgery?ref_src=twsrc%5Etfw]Author: Kim-Celine Kahl

scikit-surgeryspeech is part of the SciKit-Surgery [https://github.com/SciKit-Surgery/] software project, developed at the Wellcome EPSRC Centre for Interventional and Surgical Sciences [http://www.ucl.ac.uk/weiss], part of University College London (UCL) [http://www.ucl.ac.uk/].

scikit-surgeryspeech supports Python 3.6.

scikit-surgeryspeech is a project which runs the Python Speech Recognition API [https://pypi.org/project/SpeechRecognition/] in the background listening
for a specific command. After saying the keyword you can say different commands, which get
converted to QT Signals.

The speech recognition is done by the Google Cloud API [https://cloud.google.com/speech-to-text/], you have to get the credentials to use it or change the recognition service.

Keyword detection is done by the Porcupine API [https://github.com/Picovoice/Porcupine]. This should be have been installed automatically via the pvporcupine dependency

Please explore the project structure, and implement your own functionality.

Example usage

To run an example, just start

sksurgeryspeech.py -c example_config.json

The config file should define the paths for the porcupine library and the Google Cloud API if you are using it.

You can then say the keyword depending on the Porcupine keyword file you chose and afterwards a command. The command “quit” exits the application.

Note: each time you have already entered a command, you need to say the keyword again to trigger the listening to commands.

Developing

Cloning

You can clone the repository using the following command:

git clone https://github.com/SciKit-Surgery/scikit-surgeryspeech

If you have problems running the application, you might need to install portaudio

Mac

brew install portaudio

Ubuntu

sudo apt-get install libasound-dev portaudio19-dev

If you’re going to try sphinx might need to install pulseaudo-dev

Ubuntu

sudo apt-get install swig libpulse-dev

Set up the Porcupine keyword detection

Then, you have to set the following variables in the configuration file

"porcupine dynamic library path" : ".tox/py37/lib/python3.7/site-packages/pvporcupine/lib/linux/x86_64/libpv_porcupine.so",
 "porcupine model file path" : ".tox/py37/lib/python3.7/site-packages/pvporcupine/lib/common/porcupine_params.pv",
 "porcupine keyword file" : [".tox/py37/lib/python3.7/site-packages/pvporcupine/resources/keyword_files/linux/jarvis_linux.ppn"],

You can also generate your own keyword files [https://github.com/Picovoice/Porcupine/tree/master/tools/optimizer]

If you are using the speech recognition service within your own application, you have to start a background thread which calls the method to listen to the keyword over and over again.

You can find an example how to create such a thread in the sksurgeryspech_demo.py

Use the Google Cloud speech recognition service

To use the Google Cloud speech recognition service, you need to get the credentials [https://console.cloud.google.com/freetrial/signup/tos?_ga=2.263649484.-1718611742.1562839990] first. After signing up, you
should get a json file with your credentials. Download this file and add add it to the configuration file

"google credentials file" : "snappy-speech-6ff24bf3e262.json",

To the path of your json file. You should then be able to run the application.

Change speech recognition service

You can try different speech recognition services by changing the recogniser entry in the config file.
sphinx, google and google_cloud have all been tested, other options are possible but may not be implemented yet.

"recogniser" : "sphinx"
"recogniser" : "google"
"recogniser" : "google_cloud"
"recogniser" : "wit"
"recogniser" : "bing"
"recogniser" : "azure"
"recogniser" : "houndify"
"recogniser" : "ibm"

Python development

This project uses tox. Start with a clean python environment, then do:

pip install tox
tox

and the commands that are run can be found in tox.ini.

Installing

You can pip install directly from the repository as follows:

pip install git+https://github.com/SciKit-Surgery/scikit-surgeryspeech

Contributing

Please see the contributing guidelines [https://github.com/SciKit-Surgery/scikit-surgeryspeechblob/master/CONTRIBUTING.rst].

Useful links

	Source code repository [https://github.com/SciKit-Surgery/scikit-surgeryspeech]

Licensing and copyright

Copyright 2019 University College London.
scikit-surgeryspeech is released under the BSD-3 license. Please see the license file [https://github.com/SciKit-Surgery/scikit-surgeryspeechblob/master/LICENSE] for details.

Acknowledgements

Supported by Wellcome [https://wellcome.ac.uk/] and EPSRC [https://www.epsrc.ac.uk/].

Voice Recognition Service

Speech API algorithm

	
class sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService(config: dict)

	Bases: PySide2.QtCore.QObject

Voice Recognition service which takes an microphone input and converts it
to text by using the Google Cloud Speech-to-Text API.

Configuration dictionary must contain the following keys:

porcupine dynamic library path: Porcupine/lib/<operating_system>/<processor_type>/<library_file>

porcupine model file path: Porcupine/lib/common/porcupine_params.pv

porcupine keyword file(s): Porcupine/resources/keyword_files/<operating_system>/<keyword>

optional keys:

google credentials file: json file with google cloud api credentials

recogniser: api to use, options are sphinx, google, google_cloud, bing, houdify, ibm, wit

sphinx keywords: a list of keywords and sensitivities for sphinx
timeout for command: default None

	
google_api_not_understand

	

	
google_api_request_failure

	

	
listen_for_keyword()

	This method is called every 100 milliseconds by the QThread running and
listens for the keyword

	
listen_to_command()

	This method gets called when a specific command is said.
It then listens for specific commands and converts them to QT Signals

	
request_stop()

	Called by external client to stop timer.

	
run()

	Entry point for the QThread which starts the timer to listen in the
background

	
start_listen

	

	
start_processing_request

	

	
staticMetaObject = <PySide2.QtCore.QMetaObject object>

	

	
stop_timer

	

	
voice_command

	

 Python Module Index

 a |
 s |
 u

 		 	

 		
 a	

 	[image: -]
 	
 sksurgeryspeech.algorithms	

 	
 	
 sksurgeryspeech.algorithms.voice_recognition_service	

 		 	

 		
 s	

 	
 	
 sksurgeryspeech	

 		 	

 		
 u	

 	[image: -]
 	
 sksurgeryspeech.ui	

 	
 	
 sksurgeryspeech.ui.sksurgeryspeech_command_line	

 	
 	
 sksurgeryspeech.ui.sksurgeryspeech_demo	

Index

 G
 | L
 | M
 | O
 | R
 | S
 | V

G

 	
 	google_api_not_understand (sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService attribute), [1]

 	
 	google_api_request_failure (sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService attribute), [1]

L

 	
 	listen_for_keyword() (sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService method), [1]

 	
 	listen_to_command() (sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService method), [1]

M

 	
 	main() (in module sksurgeryspeech.ui.sksurgeryspeech_command_line)

O

 	
 	on_google_api_not_understand() (sksurgeryspeech.ui.sksurgeryspeech_demo.VoiceListener method)

 	on_google_api_request_failure() (sksurgeryspeech.ui.sksurgeryspeech_demo.VoiceListener method)

 	
 	on_start_listen() (sksurgeryspeech.ui.sksurgeryspeech_demo.VoiceListener method)

 	on_start_processing_request() (sksurgeryspeech.ui.sksurgeryspeech_demo.VoiceListener method)

 	on_voice_signal() (sksurgeryspeech.ui.sksurgeryspeech_demo.SpeechRecognitionDemo method)

R

 	
 	request_stop() (sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService method), [1]

 	
 	run() (sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService method), [1]

 	run_demo() (sksurgeryspeech.ui.sksurgeryspeech_demo.SpeechRecognitionDemo method)

S

 	
 	sksurgeryspeech (module)

 	sksurgeryspeech.algorithms (module)

 	sksurgeryspeech.algorithms.voice_recognition_service (module), [1]

 	sksurgeryspeech.ui (module)

 	sksurgeryspeech.ui.sksurgeryspeech_command_line (module)

 	sksurgeryspeech.ui.sksurgeryspeech_demo (module)

 	
 	SpeechRecognitionDemo (class in sksurgeryspeech.ui.sksurgeryspeech_demo)

 	start_listen (sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService attribute), [1]

 	start_processing_request (sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService attribute), [1]

 	staticMetaObject (sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService attribute), [1]

 	(sksurgeryspeech.ui.sksurgeryspeech_demo.SpeechRecognitionDemo attribute)

 	(sksurgeryspeech.ui.sksurgeryspeech_demo.VoiceListener attribute)

 	stop_timer (sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService attribute), [1]

V

 	
 	voice_command (sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService attribute), [1]

 	
 	VoiceListener (class in sksurgeryspeech.ui.sksurgeryspeech_demo)

 	VoiceRecognitionService (class in sksurgeryspeech.algorithms.voice_recognition_service), [1]

stable

	sksurgeryspeech package
	Subpackages
	sksurgeryspeech.algorithms package
	Submodules

	Module contents

	sksurgeryspeech.ui package
	Submodules

	Module contents

	Module contents

	sksurgeryspeech package
	Subpackages
	sksurgeryspeech.algorithms package
	Submodules

	Module contents

	sksurgeryspeech.ui package
	Submodules

	Module contents

	Module contents

sksurgeryspeech.algorithms.voice_recognition_service module

Speech API algorithm

	
class sksurgeryspeech.algorithms.voice_recognition_service.VoiceRecognitionService(config: dict)

	Bases: PySide2.QtCore.QObject

Voice Recognition service which takes an microphone input and converts it
to text by using the Google Cloud Speech-to-Text API.

Configuration dictionary must contain the following keys:

porcupine dynamic library path: Porcupine/lib/<operating_system>/<processor_type>/<library_file>

porcupine model file path: Porcupine/lib/common/porcupine_params.pv

porcupine keyword file(s): Porcupine/resources/keyword_files/<operating_system>/<keyword>

optional keys:

google credentials file: json file with google cloud api credentials

recogniser: api to use, options are sphinx, google, google_cloud, bing, houdify, ibm, wit

sphinx keywords: a list of keywords and sensitivities for sphinx
timeout for command: default None

	
google_api_not_understand

	

	
google_api_request_failure

	

	
listen_for_keyword()

	This method is called every 100 milliseconds by the QThread running and
listens for the keyword

	
listen_to_command()

	This method gets called when a specific command is said.
It then listens for specific commands and converts them to QT Signals

	
request_stop()

	Called by external client to stop timer.

	
run()

	Entry point for the QThread which starts the timer to listen in the
background

	
start_listen

	

	
start_processing_request

	

	
staticMetaObject = <PySide2.QtCore.QMetaObject object>

	

	
stop_timer

	

	
voice_command

	

sksurgeryspeech.algorithms package

Submodules

	sksurgeryspeech.algorithms.voice_recognition_service module

Module contents

sksurgeryspeech.ui.sksurgeryspeech_command_line module

Command line processing

	
sksurgeryspeech.ui.sksurgeryspeech_command_line.main(args=None)

	Entry point for scikit-surgeryspeech application

sksurgeryspeech.ui.sksurgeryspeech_demo module

Demo for the Speech API module

	
class sksurgeryspeech.ui.sksurgeryspeech_demo.SpeechRecognitionDemo(config_file)

	Bases: PySide2.QtCore.QObject

Demo class for the Speech API module

	
on_voice_signal(input_string)

	Slot for the quit signal
Quits application

	
run_demo()

	Entry point to run the demo

	
staticMetaObject = <PySide2.QtCore.QMetaObject object>

	

	
class sksurgeryspeech.ui.sksurgeryspeech_demo.VoiceListener

	Bases: PySide2.QtCore.QObject

Class which contains the slots for the demo application

	
on_google_api_not_understand()

	Slot if the google api doesn’t understand audio

	
on_google_api_request_failure(exception)

	Slot if something with the google api went wrong

	
on_start_listen()

	Slot when the user says the keyword

	
on_start_processing_request()

	Slot when the request is sent to Google API

	
staticMetaObject = <PySide2.QtCore.QMetaObject object>

	

sksurgeryspeech.ui package

Submodules

	sksurgeryspeech.ui.sksurgeryspeech_command_line module

	sksurgeryspeech.ui.sksurgeryspeech_demo module

Module contents

scikit-surgeryspeech

sksurgeryspeech package

Subpackages

	sksurgeryspeech.algorithms package
	Submodules
	sksurgeryspeech.algorithms.voice_recognition_service module

	Module contents

	sksurgeryspeech.ui package
	Submodules
	sksurgeryspeech.ui.sksurgeryspeech_command_line module

	sksurgeryspeech.ui.sksurgeryspeech_demo module

	Module contents

Module contents

scikit-surgeryspeech

 _static/up-pressed.png

_static/up.png

_static/weiss_logo.png

_images/weiss_logo.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 scikit-surgeryspeech documentation

 		
 scikit-surgeryspeech

 		
 Example usage

 		
 Developing

 		
 Cloning

 		
 Set up the Porcupine keyword detection

 		
 Use the Google Cloud speech recognition service

 		
 Change speech recognition service

 		
 Python development

 		
 Installing

 		
 Contributing

 		
 Useful links

 		
 Licensing and copyright

 		
 Acknowledgements

 		
 Voice Recognition Service

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

